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Abstract—Digital signature schemes are a founda-
tional cryptographic building block in certification
and the projection of trust. Based on a signature
scheme on committed graphs, we propose a toolkit
of certification and proof methods to sign committed
topology graphs and to prove properties of their
certificates in zero-knowledge. This toolkit allows an
issuer, such as an auditor, to sign the topology repre-
sentation of an infrastructure. The prover, such as an
infrastructure provider, can then convince a verifier of
topology properties, such as partitions, connectivity or
isolation, without disclosing the structure of the topol-
ogy itself. By that, we can achieve the certification of
the structure of critical systems, such as infrastructure
clouds or outsourced systems, while still maintaining
confidentiality. We offer zero-knowledge proofs of
knowledge for a general specification language of
security goals for virtualized infrastructures, such
that high-level security goals can be proven over
the topology certificate. Our method builds upon the
Camenisch-Lysyanskaya signature scheme, is based on
honest-verifier proofs and the strong RSA assumption.

I. INTRODUCTION

Digital signature schemes are foundational cryp-
tographic primitives, in particular to ensure the
primary security property of integrity. From their
conception [1], digital signature schemes have been
employed to sign messages or committed, hidden
messages [2], as well as to establish the integrity
of systems and their components via certifica-
tion of software or Direct Anonymous Attestation
(DAA) [3]. Digital signatures being used to estab-
lish the attestation of a system is particularly rele-
vant when a tenant delegates storage, networking or
computation to a provider, such as in outsourcing
or cloud computing. In this work, we focus on the

question how digital signatures can ensure integrity
in a delegated computation scenario.

The tenants will question the integrity of the
systems in which their resources are hosted. The
systems are typically large topologies with flat
hierarchies, by which structural properties, inter-
connectivity and isolation are important for the se-
curity of the tenants’ sub-systems and the system at
large. The tenants will naturally expect the provider
to convince them that the system is well-structured
and that their own resources are properly isolated
from other tenants. However, this fundamental in-
tegrity requirement of the tenants is at odds with
the confidentiality requirement of the provider.

The provider of such a system requires the
confidentiality of the blue-print of the system at
large. It aims to protect the tenants from exposure
and to ensure that the tenants own confidential-
ity requirements on their sub-systems are fulfilled.
Therefore, we ask: How can a provider convince a
verifier that the topology fulfills security properties,
such as tenant isolation, without disclosing other
information about the topology itself?

In this work, we pursue the research hypothe-
sis that a signature scheme on committed graphs
and efficient zero-knowledge proofs of knowledge
thereon can solve this problem. They provide us
with proofs of knowledge that show elaborate state-
ments on topology security properties, while keep-
ing the topology itself confidential. While past work
in the integrity of systems focused on attestation of
individual hosts and virtualized attestation of virtual
machines, based on the Trusted Platform Module,
we complement that work with the confidential
attestation of the system structure. We convince a
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verifier that the system is structured securely, while
keeping the blueprint of the system secret.

The main contribution of this work is a frame-
work of efficient zero-knowledge proofs of knowl-
edge over signatures on committed graphs. Those
proofs of knowledge directly apply to interesting
security goals raised by tenants, as for instance
expressed in the goal language VALID. The fun-
damental encoding and signature for undirected
graphs is already proposed in a companion paper,
which includes the proof that the signature scheme
and corresponding proofs can express statements
from NP-languages in a known-graph setting. In this
work, we extend the encoding to directed graphs.

We establish general efficient proofs of knowl-
edge for certification of topologies. Those proofs
of knowledge allow to make statements over vertex
sets, connectivity and isolation. Combined with
known discrete-logarithm based proofs of knowl-
edge [4], [5], [6], [7], [8], [9], [10], we obtain an
expressive toolkit.

We believe that the topology graph signatures
we present in this paper are a crucial building
block to close the gap between existing attestation
of individual components of an infrastructure (e.g.,
with DAA) and statements on the security of the
entire infrastructure. In particular, we propose an
efficient general method to prove that isolation goals
of tenants are fulfilled, while keeping the topology
itself confidential. This allows us to overcome the
fundamental gap between the integrity requirements
of the tenant and the confidentiality requirements of
the provider.

A. Outline

In Section II, we discuss the preliminaries of our
graph proof construction: Camenisch-Lysyaskaya
signatures and Camenisch-Groß encoding. Based
on the Camenisch-Groß encoding, we establish a
canonical encoding for vertex- and edge-labeled
graphs in Section IV. Having established the prelim-
inaries, Section III introduce the interfaces for the
graph signature scheme algorithms and the library
of proof predicates we construct subsequently. The
following sections focus on the implementation of
these interfaces, where Section IV establishes the

underlying encoding for undirected and directed
graphs. Section V-B offers the core building blocks
of proofs of representations as well as key gen-
eration and issuing of signatures on joint graphs.
Section VI offers constructions for a library of
graph proofs, starting from statements over vertex
set, adjacency to connectivity and isolation state-
ments. Section VII establishes the efficiency of the
system. Section VIII compares this work with ear-
lier proposals for transitive and homomorphic graph
signatures and zero-knowledge proofs on graphs,
while Section IX discusses future work.

II. PRELIMINARIES

A. Assumptions

Special RSA Modulus A special RSA modulus has
the form N = pq, where p = 2p′+1 and q = 2q′+1
are safe primes, the corresponding group is called
special RSA group.

Strong RSA Assumption [1], [11], [6]: Given an
RSA modulus N and a random element g ∈ Z∗N ,
it is hard to compute h ∈ Z∗N and integer e > 1
such that he ≡ g mod N . The modulus N is of a
special form pq, where p = 2p′+1 and q = 2q′+1
are safe primes. Quadratic Residues The set QRN

is the set of Quadratic Residues of a special RSA
group with modulus N .

B. Integer Commitments

Damgård and Fujisaki [12] showed for the Ped-
ersen commitment scheme [13] that if it operates
in a special RSA group and the committer is not
privy to the factorization of the modulus, then the
commitment scheme can be used to commit to
integers of arbitrary size. The commitment scheme
is information-theoretically hiding and computa-
tionally binding.

The security parameter is `. The public parame-
ters are a group G with special RSA modulus N ,
and generators (g0, . . . , gm). In order to commit
to the values (V1, . . . , Vl) ∈ (Z∗n)l, pick a random
R ∈ {0, 1}` and set

C = Commit(R, V1, . . . , Vl) = gR0

l∏
i=1

gvi
i .
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C. Known Discrete-Logarithm-Based Proofs

In the common parameters model, we use sev-
eral previously known results for proving state-
ments about discrete logarithms, such as (1) proof
of knowledge of a discrete logarithm modulo a
prime [4] or a composite [12], [6], (2) proof of
knowledge of equality of representation modulo
two (possibly different) prime [7] or composite [8]
moduli, (3) proof that a commitment opens to the
product of two other committed values [14], [8],
(4) proof that a committed value lies in a given
integer interval [9], [8], [10], and also (5) proof of
the disjunction or conjunction of any two of the
previous [15]. These protocols modulo a composite
are secure under the strong RSA assumption and
modulo a prime under the discrete logarithm as-
sumption.

Proofs as described above can be expressed in
the notation introduced by Camenisch and Stadler
[16]. For instance,

PK{(α, β, δ) : y = gαhβ∧ỹ = g̃αh̃δ∧(u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of
integers α, β, and δ such that y = gαhβ and
ỹ = g̃αh̃δ holds, where u ≤ α ≤ v,” where
y, g, h, ỹ, g̃, and h̃ are elements of some groups
G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention
is that Greek letters denote quantities of which
knowledge is being proven, while all other values
are known to the verifier. We apply the Fiat-Shamir
heuristic [17] to turn such proofs of knowledge into
signatures on some message m; denoted as, e.g.,
SPK{(α) : y = gα}(m). Given a protocol in this
notation, it is straightforward to derive an actual
protocol implementing the proof.

We introduce the following short-hands: i. A
modulus statement (mod N ) in the PK -header de-
notes the default modulus for subsequent non-range
proof congruences. ii. An all quantifier ∀i denotes
that the secrets/terms in its scope are iterated over i.
iii. We decompose proofs of knowledge statements
in multiple steps and require referential integrity
between the secrets of the steps. For example,
statements PK{(µ)} and PK{(ν)} construct one
compound proof of knowledge PK{(µ, ν)}.

D. Camenisch-Lysyanskaya Signatures

Let us introduce Camenisch-Lysyanskaya (CL)
signatures in a Strong RSA setting [2].

Let `M, `e, `N , `r and L be system parameters;
`r is a security parameter, `M the message length,
`e the length of the Strong RSA problem instance
prime exponent, `N the size of the special RSA
modulus.
Parameters. The scheme operates with a `N -bit
special RSA modulus. Choose, uniformly at
random, R0, . . . , RL−1, S, Z ∈ QRN . The public
key pk I is (N,R0, . . . , RL−1, S, Z), the private key
sk I the factorization of the special RSA modulus.

Message space is the set {(m0, . . . ,mL−1) : mi ∈
±{0, 1}`M}.

Signing algorithm. On input m0, . . . ,mL−1 ,
choose a random prime number e of length `e >
`M + 2, and a random number v of length `v =
`N + `M + `r. Compute

A =
(

Z

Rm0
0 · · ·RmL−1

L−1 Sv

)1/e

mod N.

The signature consists of (e,A, v).
The CL-signature scheme can be used to sign

hidden committed attributes. A user U commits to
values V in an integer commitment C and proves
knowledge of the representation of the commitment.
The issuer I verifies the structure of C and signs the
commitment as defined above:

A =
(

Z

CRml

l · · ·R
mL−1
L−1 Sv′

)1/e

mod N.

The user completes the signature as follows:

σ = (e,A, v) = (e,A, (v′ +R))

Verification algorithm. To verify that the
tuple (e,A, v) is a signature on message
(m0, . . . ,mL−1), check that the following
statements hold: Z ≡ AeRm0

0 · · ·RmL−1
L−1 Sv

(mod N), mi ∈ ±{0, 1}`M , and 2`e > e > 2`e−1

holds.
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Theorem 2.1: [2] The signature scheme is secure
against adaptive chosen message attacks [18] under
the strong RSA assumption.
Proving Knowledge of a Signature. A prover can
prove that she possesses a CL-signature without
revealing any other information about the signature
(as well as use the primitives in Section II-C). The
prover randomizes A: Given a signature (A, e, v),
the tuple (A′ := AS−r mod N, e, v′ := v + er) is
also a valid signature as well. Now, provided that
A ∈ 〈S〉 and that r is chosen uniformly at random
from {0, 1}`N +`∅ , the value A′ is distributed sta-
tistically close to uniform over Z∗N . Thus, the user
could compute a fresh A′ each time, reveal it, and
then run the protocol

PK{(ε, ν′, µ0, . . . , µL−1) :
Z ≡ ±Rµ0

0 · · ·R
µL−1
L−1 A

′εSν
′

(mod N) ∧
µi ∈ ±{0, 1}`M ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}

E. Set Membership from CL-Signatures

Set membership proofs can be constructed from
CL-Signatures following a method proposed by
Camenisch, Chaabouni and shelat [19]. For a set
S = {m0, . . . ,mi, . . . ,ml}, the issuer signs all
set members mi in CL-Signatures σi = (A, e, v)
and publishes the set of message-signature pairs
{(mi, σi)} integerly. To prove set membership of a
value committed in C, the prover shows knowledge
of the blinded signature σ′i corresponding to the
message mi and equality of exponents with C. We
explain this technique in detail in Appendix A and
denote a set membership proof µ[C] ∈ S, which
reads µ encoded in commitment C is member of
set S.

F. Camenisch-Groß Encoding

The Camenisch-Groß (CG) Encoding [20] gives
the CL message space structure by encoding mul-
tiple binary and finite-set values into a single mes-
sage, and we will use a similar paradigm to encode
graphs efficiently. We explain the key principles
briefly and give more details in Appendix B.

The core principle of the CG-Encoding is to rep-
resent binary and finite-set attribute values as prime
numbers. It uses divisibility and coprimality to show

whether an attribute value is present in or absent
from a credential. The attribute values certified in
a credential, say ei, ej , and el, are represented in a
single message of the CL-Signature, by signing the
product of their prime representative E = ei · ej · el
in an Integer attribute. The association between the
value and the prime number of the encoding is
certified by the credential issuer.
Divisibility/AND-Proof. To prove that a disclosed
prime representative ei is present in E, we prove
that ei divides the committed product E, we show
that we know a secret µ′ that completes the product:

PK{(µ′, ρ) : D ≡ ±(gei)µ
′
hρ (mod N)}.

Coprimality/NOT-Proof. We show that one or mul-
tiple prime representatives are not present in a
credential, we show coprimality. To prove that two
values E and F are coprime, i.e., gcd(E,F ) = 1,
we prove there exist integers a and b such that
Bézout’s Identity equals 1, where a and b for this
equation do not exist, if gcd(E,F ) > 1.

PK{(µ, ρ, α, β, ρ′) : D ≡ ±gµhρ (mod N) ∧
g ≡ ±Dα(gF )βhρ

′
(mod N)}.

OR-Proof To show that a credential contains an
attribute e that is contained in an OR-list, we show
there exists an integer a such that ae =

∏`
i ei; if e

is not in the list, then no such integer a as e does
not divide the product. We use the notation α ⊆ Ξ
for an OR-proof that α contains one or more values
of Ξ.

III. GRAPH SIGNATURE SCHEME AND PROOFS

We specify, for the first time, the abstract in-
terface of a graph signature scheme and associ-
ated proofs over graph properties. The core signa-
ture scheme consists of four algorithms: Commit,
Keygen, HiddenSign, and Verify.

Commit(G;R) is a probabilistic polynomial-time
algorithms, providing an Integer commitment com-
mitment lifted to graphs. It takes as input a graph
G encoded with the encoding encode(G) specified
in Section IV and randomness R.

Keygen(1`, params) is a probabilistic
polynomial-time algorithm, which establishes
the key setup for the graph signature scheme. It
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takes as input the security parameter ` and the
public parameters of the commitment scheme
Commit. It outputs a key pair (pk, sk), where pk
is the public key of the issuer and sk is the its
secret key.

HiddenSign(C = Commit(GU;R),VU,VI, pk I) is
an interactive probabilistic polynomial-time algo-
rithm between a user U and an issuer I. It is to
sign a graph jointly contributed by a user sub-
graph GU and an issuer sub-graph GI. The common
public input is a commitment on the user sub-
graph Commit(GU;R), disclosed connections points
VU,VI, and the issuer’s public key pk I. The user’s
private input is his sub-graph GU and the commit-
ment randomness R. The issuer’s private input is
his sub-graph GI and his secret key sk I. The user’s
output is (σ,R′), that is, a signature of the joint
graph σ = σ(GU ] GI) and a new randomness R′

combining his commitment randomness R with the
randomness of the issuer.

Verify(pk I, C,R
′, σ) is a polynomial-time signa-

ture verification algorithm. It takes as input the
issuer’s public key pk I, the original commitment
on the user’s sub-graph C, the randomness R′ and
signature σ. It outputs 1 if the signature is verified,
0 otherwise.

In addition, we provide proof predicates for
graph signatures (cf. with Table I): First, we pro-
vide an abstract predicate for the graph proof of
representation graph and a proof of possession
of the corresponding signature possession, both
implemented in Section V-B. Second, we con-
sider sets of graph elements with set coverage
cover, pair-wise disjointness disjoint and partition
partition. Third, we have predicates on connectivity
edge and connected and its complement isolation
isolated = ¬connected.We establish an imple-
mentation for zero-knowledge proofs of knowledge
thereof in Section VI. The constructed proofs of
knowledge can be combined with known discrete-
logarithm based proofs of knowledge and composed
to Boolean formulas with logical connectives ∧ and
∨.

Remark 1 (Formal Cloud Security Assurance):
The predicates predicates introduced in Table I
correspond to the major predicates of the

Virtualization Assurance Language for Isolation and
Deployment (VALID) [21], a formal specification
language of cloud security goals suitable for
automated model checking [22]. VALID expresses
goal states as a set (conjunction) of positive
and negative facts constrained by a Boolean
condition list. It uses terms, such as edge(·, ·) or
connected(·, ·) to express alarm states on topology
graphs. By establishing proof of knowledge
predicates for this language, we allow a prover to
convince a verifier that the topology is compliant
with the verifier’s VALID-specified security policy.

In the following, we will introduce the implemen-
tations for proofs of knowledge for these different
functions successively. Section IV introduces the
encoding of undirected and directed graphs itself.
Section V introduces the key generation Keygen,
the proof of representation graph and the issuing
and verification algorithms HiddenSign and Verify.
Subsequently, Section VI contains the constructions
for the set and connectivity predicates.

IV. GRAPH ENCODING

We consider graphs over finite vertex sets, with
undirected edges or directed arcs, and finite sets
of vertex and edge labels. Vertices and edges may
be associated with multiple labels. We leave the
encoding of directed arcs to the extended version
of this paper.

V Finite set of vertices
E ⊆ (V × V) Finite set of edges
G = (V, E , tV , tE) Graph
LV ,LE Finite sets labels
fV : V → P(LV) labels of a given vertex
fE : E → P(LE) labels of a given edge
n = |V|,m = |E| number of vertices and edges

For each vertex i in V , we introduce a vertex
identifier, a prime ei, which represents this vertex
in credential and proofs. The symbol ⊥, associated
with identifier e⊥ represents that a vertex is not
present. All vertex identifiers are pair-wise different.
We call the set of all vertex identifiers ΞV , their
product χV = ΠΞV . For each label k in the label
sets LV and in LE , we introduce a prime repre-
sentative ek. All label representatives are pair-wise
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Table I
PROOF OF KNOWLEDGE PREDICATES FOR GRAPH SIGNATURES.

Predicate Description

possession(G, σ, µi) Proof of possession of a graph signature σ §V-B
vertices(G, εi, γi) Proof of composition of graph vertices of a proof of possession §V-B
edges(G, εi, εi, γ(i,j)) Proof of composition of graph edges of a proof of possession §V-B
graph(G, µi) Proof of representation and well-formedness §V-B

set(V, V ) Representation of a set V ⊆ V §VI-A
cover(V, V1, . . . , Vk) Vertex set coverage

⋃
(V1, . . . , Vk) = V §VI-A

disjoint(V, V1, . . . , Vk) Vertex set pair-wise disjointness
⋂

(V1, . . . , Vk) = ∅ §VI-A
partition(V, V1, . . . , Vk) Vertex set partition

⋃
(V1, . . . , Vk) = V ∧

⋂
(V1, . . . , Vk) = ∅ §VI-A

edge(G, i, j) VALID-rule: Adjacency of (i, j) §VI-B
connected(G, i, j, `) VALID-rule: Existence of an `-path between vertex i and vertex j §VI-C

isolated(G, i, j) VALID-rule: Isolation of vertices i and j: There exists no path between i and j §VI-D

different. We call the set of all label representatives
ΞL, their product χL = ΠΞL. Vertex identifiers and
label representatives are disjoint:

ΞV ∩ ΞL = ∅ ⇔ gcd(χV , χL) = 1.

A. Random Base Association

We encode vertices and edges into the exponents
of integer commitments and CL-Signatures and
make them therefore accessible to proofs of linear
equations over exponents. We randomize the base
association to vertices and edges: For a vertex index
set V = {0, . . . ,n − 1} with vertex identifiers ei,
we choose a uniformly random permutation πV of
set V to determine the base Rπ(i) to encode vertex
i. Edge bases Rπ(i,j) are chosen analogously with
a random permutation πE .

B. Encoding Vertices

To encode a vertex and its associated labels into
a graph commitment or CL-Signature, we encode
the product of the vertex identifier ei ∈ ΞV and the
prime representatives ek ∈ ΞL for k ∈ fV(i) of
the labels into a single of the signature message.
The product of prime representatives is encoded as
exponent of dedicated vertex bases R ∈ GV .

C. Encoding Edges

To get a compact encoding and efficient proofs
thereon, the encoding needs to maintain the graph

structure and to allow us to access it to proof higher-
level properties, such as connectivity and isolation.
The proposal we make in this paper after evalu-
ating multiple approaches is to use divisibility and
coprimality similar to the CG-Encoding to afford us
these efficient operations over the graph structure,
while offering a compact encoding of edges.

1) Undirected Edge Encoding: Recall that each
vertex is certified with an vertex identifier from ΞV ,
e.g., ei or ej . For each edge (i, j) ∈ E , we include
an edge attribute as exponent of a random edge base
Rπ(i,j) ∈ GE , containing the product of the vertex
identifiers and the associated label representatives
ek ∈ ΞL for k ∈ fE(i, j) of the edge:

E(i,j) := ei · ej ·Πk∈fE(i,j)ek.

Whereas we usually consider simple graphs, spe-
cialities such as multigraphs, loops (i, i) encoded
as e2

i or half-edges encoded as (ej , e⊥) can be
included.

2) Directed Edge Encoding: We call a directed
edge an arc. For each arc (i, j), with tail i and
head j, we include an edge attribute as exponent
of a random edge base R(i,j) ∈ GE , containing the
product of the tail’s vertex identifier and the the
square of the head’s vertex identifier (along with
the label representatives ekΞL for k ∈ fE(i, j)):

E(i,j) := ei · e2
j ·Πk∈fE(i,j)ek.
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Whereas we usually consider simple graphs, spe-
cialities such as directed multigraphs, loops (i, i)
encoded as e3

i or half-arcs encoded as (ej , e2
⊥) or

(e⊥, e2
i ) can be included.

D. Well-formed Graphs

Definition 1 (Well-formed graph): We call a
graph encoding well-formed iff 1. the encoding
only contains prime representatives e ∈ ΞV ∪ ΞL
in the exponents of designated vertex and edge
bases R ∈ GV ∪ GE , 2. each vertex base R ∈ GV
contains exactly one vertex identifier ei ∈ ΞV ,
pair-wise different from other vertex identifiers
and zero or more label representatives ek ∈ ΞL,
and 3. each edge base R ∈ GE contains exactly
two vertex identifiers ei, ei ∈ ΞV and zero or more
label representatives ek ∈ ΞL.

Theorem 4.1 (Unambiguous encoding): A well-
formed graph encoding on the integers is unam-
biguous modulo the base association. [Proof in
extended version]

V. SIGNATURES ON COMMITTED GRAPHS

CL-signatures are signatures on committed mes-
sages, where messages can be contributed by issuer
and user. This translates to a user committing to a
hidden partial graph, which is then completed by the
issuer. We establish the setup for the construction
first, explain the proof of representation second, and
the issuing third.

As a point of reference, we give the structure of
the graph signatures first. We have bases Rπ(i) ∈
GV , which store attributes encoding vertices, and
bases Rπ(i,j) ∈ GE , which store attributes encod-
ing edges. The base association is randomized by
permutations πV and πE . The following congruence
holds in Z∗n:

Z ≡ ±ReiΠk∈fV (i)ek

π(i)︸ ︷︷ ︸
∀ vertices i

· · ·ReiejΠk∈fE (i,j)ek

π(i,j)︸ ︷︷ ︸
∀ edges (i,j)

AeSv

A. Setup and Key Generation

We define the setup and algorithm
Keygen(1`,Params) step by step. The setup
builds on the CL-Signature setup as described
in §II-D, where we need to establish additional
elements, to prepare for set membership proofs.

As part of the CL-Signature setup, the issuer
chooses, uniformly at random, message-space
bases R0, . . . , RL−1 ∈ QRN and designates the
bases R0, . . . , Rm−1 for vertex messages and bases
Rm, . . . , RL−1 for edge messages.

In addition, the issuer chooses, uniformly at ran-
dom, RV , RL ∈ QRN , pair-wise different from the
message-space bases R0, . . . , RL−1.

The issuer certifies the prime representatives of
vertices ei ∈ ΞV and labels ej ∈ ΞL, by CL-signing
these primes: On input of a vertex representative
ei, the issuer chooses a random prime number e of
length `e > `M + 2, and a random number v of
length `v = `n + `M + `r. It computes

A =
(

Z

Rei

V S
v

)1/e
mod N

and outputs σi = (A, e, v) and ei. Label represen-
tatives are signed analoguously using base RL.

The issuer computes the products of vertex and
label representatives χV and χL and an Integer
commitments thereon:

CV = RχVSrV mod N and CL = RχLSrL mod N.

The issuer creates a signature proof of knowledge
showing that ΞV and ΞL are disjoint and that the
products consist of all certified prime representa-
tives for vertices and labels respectively.

σΞ =SPK{(ρ1, ρ2, (∀i : εi, ν′i),
(∀k : εk, ν′k), α, β, ρ′) : (mod N)

CV ≡ ±RΠΞVSρ1 ∧
CL ≡ ±RΠΞLSρ2 ∧
∀ei ∈ ΞV : Z ≡ ±Rei

V A
′εiSν

′
i ∧

∀ek ∈ ΞL : Z ≡ ±Rek

L A
′εkSν

′
k ∧

R ≡ ±CαVC
β
LS

ρ′ ∧
∀ei, ek ∈ ±{0, 1}`M ∧
∀εi, εk ∈ [2`e−1 + 1, 2`e − 1]}

Finally, Keygen outputs as public key pk I an
extension of the CL-signature public key, including
the certified prime representatives for vertices and
labels:

pk I = (N,R0, . . . , RL−1, RV , RL, S, Z,ΞV ,ΞL, σΞ)
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The private key sk I is the factorization of the
issuer’s special RSA modulus N .

B. Proof of Representation

For a full proof of representation, we need to
establish that the encoded graph in a graph com-
mitment or CL-Signature is indeed well-formed
(Def. 1). We represent this proof by predicate
graph(G). Given a graph commitment C the prover
and verifier engage in the following proof of rep-
resentation (the proof for a CL credential work
analoguously). We show that vertex bases contain
a bi-partition of one and only one vertex identifier
ei ∈ ΞV and a set of labels el ∈ ΞL. Edge bases
contain a bi-partition of a product of exactly two
vertex identifiers (ei·ej) and a set of labels el ∈ ΞL.
To prove that the representation contains exactly
one vertex identifier for a vertex base and two
vertex identifiers for an edge base, we establish a
set membership proof.

1. Commitments The prover computes Integer
commitments on the exponents of all vertex and
edge bases. First, the prover computes commit-
ments on all messages to allow their decomposi-
tion into components. These are the commitments
Commit(possession(G, σ, µi); ri, r(i,j)) in Z∗N with
uniformly chosen randomness ri, r(i,j) ∈ {0, 1}`:

Ci = ReiΠk∈fV (i)ekSri

C(i,j) = ReiejΠk∈fE (i,j)ekSr(i,j)

For each vertex i, the prover computes commit-
ments Commmit(vertices(G); r̆i) in Z∗N on vertex
attribute and identifier using uniformly-chosen ran-
domness r̆i ∈ {0, 1}`:

C̆i = ReiS r̆i .

For edges (i, j), the commitments are in
Z∗N with uniformly chosen randomness
r̆(i,j), ṙ(i,j) ∈ {0, 1}`. We call them
Commit(edges(G); r̆(i,j), ṙ(i,j)):

C̆(i,j) = ReiejS r̆(i,j) and Ċi = ReiS ṙ(i,j) .

2. Proof of knowledge. We construct the proof
of possession and well-formedness step by step,
where it is understood the proofs will be done in
one compound proof of knowledge with referential

integrity between the secret exponents. Let us con-
sider a proof fragment for vertices i, j and an edge
(i, j) committed in a graph commitment C (the
same proof structure is used for CL-Signatures).

2.1 Proof of representation. We prove that com-
mitment C can be decomposed into commitments
Ci, Cj , one for each vertex i, j and one commitment
C(i,j) for each edge (i, j):

PK{(µi, µj , µ(i,j), ρ, ρi, ρj , ρ(i,j)) : (mod N)
C ≡ ±

∏
i,j

Rµi

π(i)R
µj

π(j)

∏
(i,j)

R
µ(i,j)
π(i,j)S

ρ ∧ (1)

Ci ≡ ±RµiSρi ∧ Cj ≡ ±RµjSρj ∧ (2)
C(i,j) ≡ ±Rµ(i,j)Sρ(i,j)}. (3)

The same proof of representation can be applied to
graph signatures to prove the predicate possession:

Z ≡ ±
∏
i,j

Rµi

π(i)R
µj

π(j)

∏
(i,j)

R
µ(i,j)
π(i,j)A

′ε′Sρ
′

2.2 Vertex composition. Second, we need to show
properties of the vertex composition that the encod-
ing for each vertex i contains exactly one vertex
identifier ei ∈ ΞV and zero or multiple label
representatives ek ∈ ΞL. We show this structure
with help of the commitments C̆i and set member-
ship and prime-encoding OR proofs. This proof is
executed for all vertices.

PK{(∀i : εi, ρ̆i, γi, ρ′i) : (mod N)
C̆i ≡ ±RεiSρ̆i ∧ Ci ≡ ±C̆γi

i S
ρ′i ∧ (4)

γi[Ci] ⊆ ΞL ∧ εi[C̆i] ∈ ΞV}. (5)

Clause 4 establishes the predicate
vertices(G, µi, εi, γi), where the second term
links to the possession commitments.

2.3 Edge composition. Third, we prove the struc-
ture of each edge (i, j) over the commitments
C(i,j), showing that each commitment contains ex-
actly two vertex identifiers ei, ej ∈ ΞV as well as
zero or more label representative ek ∈ ΞL:

PK{(εj , ρ(i,j), γ(i,j), ρ
′
(i,j)) : (mod N)

C̆(i,j) ≡ ±Ċ
εj

i S
ρ(i,j) ∧ (6)

C(i,j) ≡ ±C̆
γ(i,j)
(i,j) S

ρ′(i,j) ∧ (7)

γi,j ⊆ ΞL}. (8)
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Clauses 6 and 7 establish the predicate
edges(G, εi, εj , γ(i,j)), where Clause 7 binds the
edges commitments to the possession commitments.

2.4 Pair-wise difference. Finally, we prove pair-
wise difference of vertices by showing that the
vertex representatives are pair-wise co-prime over
the commitments C̆i and C̆j .

PK{(∀i, j : αi,j , βi,j , ρi,j) :
R ≡ ±C̆αi,j

i C̆
βi,j

j Sρi,j (mod N)}. (9)

The compound proof of knowledge establishes the
predicate graph(G, µi).

C. Joint Graph Issuing

To jointly issue a graph CL-signature, a user
commits to a hidden partial graph and the issuer
adds further elements to the graph (cf. Section II-D)

In the setup, the issuer establishes a user vertex
space and issuer vertex space, i.e., a bi-partition on
vertex and edge bases, GV and GE and on vertex
identifiers ΞV . Thus, user and issuer can encode
partial graphs without interfering with each other.

In the joint graph issuing, user and issuer desig-
nate and disclose connection points (vertex identi-
fiers) that allow the user and the issuer to connect
their sub-graphs deliberately. The user constructs
a graph representation by choosing two uniformly
random permutation πV and πE for the base associa-
tion on the user bases and commits to his sub-graph
in a graph commitment. The user interacts with the
issuer in a proof of representation of his committed
sub-graph. The issuer verifies this proof, chooses
uniformly random permutations for his graph ele-
ments and encodes them into his base range. The
issuer creates the pre-signature of the CL-Signature
scheme on the entire graph, proving that the added
sub-graph is well-formed. The user completes the
CL-Signature with his own randomness.

VI. PROOFS OF GRAPH PROPERTIES

Having established encoding and foundational
bootstrapping cycle of proof of representation and
issuing, we continue to establish a library of graph
proof predicates. First, we explore with proofs over
vertex and edge sets, including coverage and pair-
wise disjointness, which are the basis of partition

proofs. Second, we discuss different proofs over
presence and absence of labels. Third, we establish
results on connectivity and isolation in undirected
and directed graphs.

A. Sets of Vertices and Cumulative Products

Arguing over sets of vertices of hidden graphs is
a basic tool for graph proofs.

1) Sets as Products: We represent a set of ver-
tices V ⊆ V with ` elements by the cumulative
product of its vertex identifiers:

EV = Πi∈V ei.

The normal set representation only includes the
vertex identifiers of the vertex set, the extended set
representation also all associated vertex labels. We
will use proofs over cumulative products repeatedly
an establish a generic interface for those. In the
following, we rename the vertex identifier indices
to range over 1, . . . , `, wlog.

1. Commitments. The prover commits to the
to the vertex set representation as the cumulative
product EV . To prepare the proof of representa-
tion the prover establishes intermediate commit-
ments Commit(set(V, V ); r̆1, . . . , r̆`) in Z∗N on par-
tial products using uniformly chosen randomness
r̆1, . . . , r̆`:

C̆V,1 = Re1S r̆1 , . . . , C̆V,` = RΠ`
1eiS r̆` .

2. Proof of Representation. To establish a proof
of representation of a set set(V, V ) that a cumu-
lative product EV is composed of the identifiers
of certified vertices, the prover engages with the
verifier in the following proof of knowledge over
the cumulative product:

PK{((∀i : µi, εi), ρ̆1, . . . , ρ̆`) : (mod N)
possession(G, σ, µi) ∧ vertices(G, µi, εi)
C̆V,1 ≡ ±Rε1Sρ̆1 ∧
C̆V,2 ≡ ±C̆ε2

V,1S
ρ̆2 ∧ . . .

C̆V,` ≡ ±C̆ε`

V,`−1S
ρ`

Remark 2 (Edge Sets): Edge sets can be repre-
sented as products of their vertex identifiers, as well.
This is a degenerate representation as it does not
maintain the the edge structure, but only the vertices
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present, however as we shall see in Section VI-C it
serves its purpose for edge partitions.

2) Coverage: The predicate cover establishes⋃
{V1, V2, . . . , Vk} = V , that is, a given set of

vertex sub-sets complete covers the graph vertices.
In terms of the divisibility proofs, this equivalent
to the product of all graph vertex identifiers χV
dividing the product representation of the sets:

χV |
k∏
i=1

EVi
⇔ ∃a : aχV =

k∏
i=1

EVi
,

where EVi
=
∏
j∈Vi

ej . The product representation
of ΞV is signed with CV as part of the issuing. Thus,
given proofs for set(G, Vi), we compute commit-
ments and proofs for set(G, {V1, . . . , Vk}), which
results in a commitment on the cumulative product
of all sets: CV̄ = R

∏k

i=1
EViS r̄.

To complete the proof of coverage, the prover
and the verifier engage in the following proof of
knowledge:

PK{(α, ρ) :
set(G, V1) ∧ · · · ∧ set(G, Vk) ∧
set(G, {V1, . . . , Vk}) ∧
CV̄ ≡ ±CαVSρ (mod N)

3) Pair-wise Disjointness: The predicate disjoint
establishes that vertex sets do not have a joint
vertex,

⋂
{V1, V2, . . . , Vk} = ∅. We use the fact that

two vertex sets Vi ⊆ V and Vj ⊆ V are pair-wise
disjoint if their product representations are coprime:

Vi ∪ Vj ⇔ gcd(EVi , EVj ) = 1.

Based on given commitments CVi
and proofs for

predicates set(G, Vi) and set(G, Vj), we can estab-
lish co-primality and thereby disjointness as fol-
lows:

PK{(∀i, j : αi,j , βi,j , ρi,j) : (mod N)
set(G, V1) ∧ · · · ∧ set(G, Vk) ∧
∀i, j : R ≡ ±Cαi,j

Vi
C
βi,j

Vj
Sρi,j

4) Partition: For a partition proof, we com-
pose coverage and pair-wise disjointness operating

with given commitments and proofs for predicates
set(G, Vi):⋃
{V1, V2, . . . , Vk} = V ∧

⋂
{V1, V2, . . . , Vk} = ∅.

B. Arguing over Edges

To prove the edge predicate, that is, to show that
an edge base with an exponent E encodes the edge
(i, j), we need to show that

(eiej)|E ⇔ ∃a : a(eiej) = E.

This is realized by the prover engaging with the
verifier in the following proof of knowledge:

PK{((∀i : µi), µ′, ρ′) :
possession(G, µi) ∧
C(i,j) ≡ ±(Reiej )µ

′
Sρ
′

(mod N)}.

Negated VALID predicates, such as ¬edge(i, j)
stating that there is no edge (i, j) in a graph’s edge
set, are hard to prove in zero-knowledge proofs of
knowledge, because the verifier needs to be con-
vinced that the prover did not withhold information.
We therefore need to show for all edges in E that
none of them is (i, j). We reduce ¬edge(i, j) to
isolated(i, j) and to use the proof constructed in
Section VI-C.

C. Connectivity

A major area of interest for hidden-graph proofs
is connectivity: How can we show that different
vertices of a hidden graph are connected by a chain
of ` edges?

Wlog., let end vertices be i and j. The predicate
connected(G, i, j, `) means that there exists a se-
quence of at most ` edges (i, k1), . . . , (kn, j) such
that the end vertex of one edge is the start vertex
of the next.

1) Undirected Graph:
Example 1: Let us consider the following chain

of connected edges:

(ei · e1), (e1 · e2), (e2 · e3), (e3 · ej)

We observe that two vertices are connected if and
only if there exits a sequence of edge products,
such that their the edges match in the joint vertex
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identifier. By that, we have for instance for the first
pair of edges:

e1|(ei · e1) ∧ e1|(e1 · e2)

Therefore, we can express connectivity by a
chained proof of divisibility constructed from
the commitments and proofs of the predicate
edges(G, εi, εj , γ(i,j)). Recall that this predicate
creates commitments in Z∗N :

C̆(i,j) = ReiejS r̆(i,j) and Ċi = ReiS ṙ(i,j)

for each edge (i, j), allowing us to compose state-
ments adjacent edges via C̆(i,j) and the subsequent
Ċj . We show that a joint factor ε divides adjacent
edges (i, j) and (j, k) with the following proof of
knowledge:

PK{(ε, ρ, ρ′) : (mod N)
C̆(i,j) ≡ ±ĊεiRρ ∧ Ċj = RεSρ

′
}.

2) Directed Graphs: We observe that the match-
ing of arc products is a necessary condition for con-
nectivity in directed graphs. It is not sufficient be-
cause arc directions need to match, too. Reachabil-
ity in directed graphs is not symmetric. Let us con-
sider the sequence of arcs: iy1, 1y2, 2y3, 3yj,
where the encoding denotes the tip of the arc by
encoding e2

i . Thus, in this case the divisibility proof
is:

e2
1|(ei · e2

1) ∧ e1|(e1 · e2).

Based on the assumption that this issuer only cer-
tifies well-formed graphs (in which each arc has
only one tip), such a chain of divisibility proofs
convinces the verifier of the connected predicate
analogously to the undirected case.

D. Isolation

For vertices i and j isolated(i, j) =
¬connected(i, j) means that there exits no
connected path between both vertices i and j.

1) Undirected Graph: For undirected graphs,
isolation means that the vertices i and j are in
separate sub-graphs.

Two vertices i and j are isolated, if there exits a
bi-partition of the edge set V ′∪V ′′ = E∧V ′∪V ′′ =
∅, such that wlog. i ∈ V ′ and j ∈ V ′′. Recall that

Section VI-A represents an edge set in a degenerate
form, as the product of the edges’ vertex identifiers
E′ and E′′. We obtain commitments and proofs for
the predicates set(G, V ′) and set(G, V ′′) which give
us two commitments in Z∗N :

C̆E′ = RE
′
S r̆
′

and C̆E′′ = RE
′′
S r̆
′′
.

We can derive coverage already from the fact that
all commitments of the predicate edges are used to
establish the cumulative products for both edge sets.
The disjointness of the edge-set bi-partition gives
the isolation result, which we prove by showing that
both products are coprime:

gcd(E′, E′′) = 1 ⇔ ∃a, b : aE′ + bE′′ = 1.

The complete the proof of the predicate isolated,
the prover and the verifier engage in the following
proof of knowledge:

PK{(α, β, ρ) : (mod N)
set(G, V ′) ∧ set(G, V ′′) ∧
R ≡ ±C̆αE′C̆

β
E′′S

ρ

Remark 3: The isolation predicate constructed in
this section argues over the edges only. In ac-
tual topologies, such as infrastructure clouds, it is
however the case that graph labels are important
to decide upon connectivity and isolation. This
holds in particular for the VLAN IDs of virtualized
infrastructures, which allow communication if com-
ponents have matching VLAN IDs. The isolation
predicate can be easily extended to show pair-wise
disjointness for labels as well, which we demon-
strated in a companion paper for an infrastructure
cloud example.

2) Directed Graphs: Isolation proofs in directed
graphs need to account for arc direction and are not
symmetric. We sketch the concept of an isolation
proof for a directed graph briefly. We have isolation
from vertex i to vertex j, if there exists a tri-
partition of the graph arcs into three sets A, B and
C with the following properties:
• A contains the arcs containing i.
• B is the boundary zone between both sub-

graphs, of arcs between vertices of A and B.
• C contains the arcs containing j.
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• ΠA and ΠC are coprime, i.e., they have no
vertex identifier in common.

• i and j are coprime with respect to ΠB, i.e.,
the boundary zone does not contain i or j.

• For all arcs in B holds, arcs only go from C
to A and not in the opposite direction.

The proofs of knowledge for this statement can be
realized with the techniques demonstrated above.

VII. EFFICIENCY ANALYSIS

We display the efficiency analysis for the proof
predicates in Table II, where each row shows the
overhead over the basis predicate stated in the
first column. We measure computational complexity
in multi-base and modular exponentiations. The
communication complexity is dominated by the
transmitted group elements from Z∗N , which is equal
to the number of multi-base exponentiations (one
for each Integer and Schnorr proof commitment).
The most expensive proof is the complete graph
representation established in the issuing, where the
set membership proofs (4 MExps) and the OR-
based subset proofs (6 MExps) constitute significant
overhead. In the down-stream proofs, the verifier
trusts the issuer to only certify well-formed graphs.

The modular exponentiations for message bases
Ri are with small exponents of size of `M �
`N , where the parameter `M can be chosen sim-
ilarly small as in Direct Anonymous Attestation
(DAA) [3]. Implementing the proofs of represen-
tation as multi-base exponentiations will reduce the
number of multiplications significantly and thereby
offer a significant speed-up. Following the analysis
of Camenisch and Groth [23], we can estimate that
a multi-base exponentiation takes about 10% more
time than a single modular exponentiation with
same exponent size.

In addition, the Σ-proofs employed in this work
benefit from batch-proof techniques, such as [24].
The graph proofs are likely to be transformed to
signature proofs of knowledge with the Fiat-Shamir
heuristic [17] and can thereby be computed offline.

VIII. RELATED WORK

Zero-knowledge proofs on graphs and their prop-
erties is a classic area of research and have been

instrumental in showing that there exist zero-
knowledge proof systems for all NP languages,
e.g., [25], [26] Both proofs use a metaphor of locked
boxes to construct known-graph proofs of Graph 3-
Colorability (G3C) or Directed Hamiltonian cycles
(DHC). The constructions focus on zero-knowledge
proofs of knowledge and do not cater for a level of
indirection through a signature scheme or proofs of
knowledge on graph properties in a hidden-graph
setting.

A related notion to full graph signatures is tran-
sitive or homomorphic signature schemes, such
as [27], [28], [29]. They are concerned with the
transitive closure of signatures on graph elements,
such that from signatures from edges (i, j) and
(j, k) everybody can derive a valid signature on
the edge (i, k). These signature schemes have the
advantage that one can produce a signature of
the transitive path over multiple edges. Therefore,
they allow to show signatures equivalent to the
connected predicate without disclosing the number
of edges on the path and without overhead because
of path length. The constructions are not meant to
be on committed graphs and consider the signatures
as public information. They have limited support
for labels and do not have provisions for proofs of
isolation as signatures could be withheld.

IX. CONCLUSION AND FUTURE WORK

We have introduced a signature scheme on com-
mitted graphs together with a library of proof
predicates on sets, connectivity and isolation. The
scheme covers undirected and directed, unlabeled
and labeled graphs and enables honest-verifier zero-
knowledge proofs of knowledge over graph prop-
erties, while keeping the graph itself confidential.
It constitutes a building block to overcome the re-
quirement gap between the confidentiality require-
ments of a provider and the integrity requirements
of a tenant.

The signature scheme and its proofs are created
in a special RSA setting; their security is based on
the Strong RSA assumption. The signature scheme
is based on the Camenisch-Lysyanskaya (CL) sig-
nature scheme [2] and its existential unforgeabil-
ity directly derived from that. The proofs can be
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Table II
EFFICIENCY OF PROOFS OF PREDICATES IN MULTI-BASE AND MODULAR EXPONENTIATIONS (MULTIEXPS AND MODEXPS).

FOR A SIMPLE GRAPH HOLDS m ≤ n(n−1)
2 . IN MOST CASES IN PRACTICE HOLDS k � ` ≤ n AND O(k`) = O(n).

Predicate Basis Commitments MultiExps ModExps
# # # O

possession(G, σ, µi) n + m 2n + 2m + 1 5n + 5m + 2 O(n + m)
vertices(G) possession n 3n 6n O(n)
edges(G) possession 2m 4m 8m O(m)
graph(G) 2n + 3m n2 + 8n + 8m + 1 3n2 + 21n + 19m + 1 O(n2)

set(V, V ), with ` = |V | vertices ` 2` 4` O(`) = O(n)
cover(V, V1, . . . , Vk) vertices k(`+ 1) 2k(`+ 1) + 1 4k(`+ 1) + 2 O(k`)
disjoint(V, V1, . . . , Vk) vertices k` k2 + 2k` 3k2 + 4k` O(k2 + k`)
partition(V, V1, . . . , Vk) vertices k(`+ 1) k2 + 2k(`+ 1) 3k2 + 4k(`+ 1) + 2 O(k2 + k`)

edge(G, i, j) possession 0 1 2 O(1)
connected(G, i, j, `) edges 0 2` 4` O(`) = O(m)

isolated(G, i, j) edges m 2m + 1 4m + 3 O(m)

transformed to signature proofs of knowledge with
the Fiat-Shamir [17] heuristic, secure in the Ran-
dom Oracle Model. The constructions for the proof
predicates are efficient and practical.

As future work, we see great potential in linking
the graph signatures to Direct Anonymous Attes-
tation (DAA) [3]. This allows the combination
of attestation results for system components (e.g.,
physical and virtual hosts) with statements over the
system topology. A bridge between a formal cloud
security assurance language, such as VALID [21],
and predicates for graph proofs seems like an im-
portant step to link virtualized systems analysis and
certification of topology structures.
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APPENDIX

A. Proof Techniques for CL Set-Membership
We will need to prove that graph elements used in a

user’s committed graph are indeed certified by an issuer.
To that end, we need to proof an exact set membership.
Partially, the graph encoding used needs to be associated
to certified semantics.

We obtain a set membership proof drawing on in-
spiration from the set membership work of Camenisch,
Chaabouni and shelat [19]: Whereas their signature-
based set-membership protocol is based on Boneh-Boyen
signatures, we create a variant based on Strong-RSA
CL-signatures with the same paradigm: 1. Publishing
signatures on all set members, 2. blinding the signature
for the set member to prove membership, and 3. proof
of representation and equality of exponents. Given that
the CL-Signature scheme is multi-use unlinkable, the
published signatures can be used for multiple proofs.

Consider a set S = {m0, . . . ,mi, . . . ,ml} The issuer
signs all possible members mi of the set in CL-Signatures
σi = (A, e, v) and publishes the set of signature-message
pairs {(mi, σi)} integerly.

In the setup of a Strong-RSA CL-Signature scheme,
the signature σi will fulfill the following equation:

Z ≡ ±Rmi
S AeSv (mod N)

A prover shows that a value µ in a zero-knowledge
proof, say a committed value C = gµhr mod N , is a
member of the set S proceeds as follows. The prover
randomizes the signature σi = (A, e, v) of the corre-
sponding message mi:

(A′ := AS−r mod N, e, v′ := v + er)

as in a standard proof of possession of a CL-Signature
(cf. §II-D). The prover sends the randomized A′ to the
verifier and proves equality of exponents as follows:

PK{(µ, ρ, ε, ν′) :
C ≡ ±gµhρ (mod N) ∧

Z ≡ ±RµSA
′εSν

′
(mod N) ∧

µ ∈ ±{0, 1}`M ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}
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For a secret message µ in an Integer commitment C
and a established signature distribution for set S, we
denote a set membership proof

µ[C] ∈ S,

which reads µ encoded in commitment C is member of
set S.

B. Proof Techniques for the CG-encoding

Let us consider the basic principles underlying the
proofs of the Camenisch-Gross (CG) encoding [20] in
two examples on an Integer commitment

D = gEhr mod N.

Example 2 (Divisibility): Divisibility is the basis of an
AND-Proof. To prove that a disclosed prime represen-
tative ei is present in E, we prove that ei divides the
committed product E, we show that we know a secret µ′

that completes the product:

ei|E ⇔ ei · µ′ = E.

Expressed as proof of knowledge, we have:

PK{(µ′, ρ) : D ≡ ±(gei )µ
′
hρ (mod N)}.

Example 3 (Coprimality): Coprimality is the basis of
the NOT-Proof. We show that one or multiple prime
representatives are not present in a credential, we show
coprimality. To prove that two values E and F are
coprime, i.e., gcd(E,F ) = 1, we prove there exist
integers a and b such that Bézout’s Identity equals 1:

gcd(E,F ) = 1 ⇔ aE + bF = 1.

Note that a and b for this equation do not exist, if
gcd(E,F ) > 1.

PK{(µ, ρ, α, β, ρ′) : (mod N)

D ≡ ±gµhρ ∧ g ≡ ±Dα(gF )βhρ
′
}.

a) AND-Proof: The CG-Encoding employs divis-
ibility to show that one or more attributes, say ei, ej , and
el, are encoded in an anonymous credential:

PK{(ε, ν′, µ′) :

Z ≡ ±(Reiejel )µ
′
A′εSν

′
(mod N) ∧

µ′ ∈ ±{0, 1}`M−3`t ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}.

b) NOT-Proof: We have seen that proving that a
given ej is not contained in the credential amounts to
show that ej - E is the case. The user can do so by
showing that there exist two integers a and b such that
aE + bej = 1, where a and b do not exist if ej | E.
The values a and b can be computed efficiently with the
extended Euclidian algorithm.

The CG-Encoding that achieves this is as follows:
After having computed a and b, the prover computes an
integer commitment D = gEhr mod N with random-
ness r. The prover sends D to the verifier and runs the
following protocol with him (where a and b are the secret
denoted by α and β, respectively):

PK{(ε, ν′, µ, ρ, α, β, ρ′) : (mod N)

Z ≡ ±RµA′εSν
′
∧

D ≡ ±gµhρ ∧ g ≡ ±Dα(gej )βhρ
′
∧

µ ∈ ±{0, 1}`M ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}.

c) OR-Proof: In addition, we can show that one
of a list of attributes is contained in a credential (an OR-
relation).

To prove that her credential contains one of the
attributes values {e1, ...., e`}, a user can employ the
following protocol. First, the user compute a commitment
D to the attribute contained in here credential (in the same
way as for the other protocols), send it to the verifier, and
then runs with the verifier the following proof protocol.

Remark 4 (Ruling out ±1): The proof employs a fur-
ther group, i.e., one of prime order q and two generators
g and h of that group such that logh g is unknown.
Now, except the commitment D the attribute value in
question, say ej , as before, the user further computes the
commitment D = gejhr , where r is a random element
from Zq.
The full proof on the anonymous credential is formed as
follows.

PK{(ε, ν′, µ, ρ, α, β, δ, ρ, ρ′, ϕ, γ, ψ, ξ, σ) : (mod N)

Z ≡ ±RµA′εSν
′
∧ D ≡ ±gαhρ ∧

g

∏`

i
ei = Dδhρ

′
∧ 1 = Dβgµhρ

′
∧

D = gαhϕ ∧ g = (D
g

)γhψ ∧ g = (gD)σhξ ∧

µ ∈ ±{0, 1}`M ∧ ε ∈ [2`e−1 + 1, 2`e − 1]}.
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